GROWTH OF THE EDIBLE MICROALGA ARTHROSPIRA PLATENSIS IN RELATION TO BORON SUPPLY

Shotaro Tadama1 and *Hideaki Shiraishi1

1Graduate School of Biostudies, Kyoto University, Japan

*Corresponding Author. Received: 31 May 2016. Revised: 29 Nov. 2016. Accepted: 19 Dec. 2016

ABSTRACT: Arthrospira (Spirulina) platensis is an edible cyanobacterium that has been consumed worldwide as a nutrient source under the name spirulina. When preparing synthetic media for this microalgae, boron is usually added to them. However, whereas boron is necessary for the N₂-fixation-dependent growth of heterocystous cyanobacteria, boron requirement by A. platensis, which is non-heterocystous, has not yet been carefully examined. To examine the effect of boron on A. platensis, we prepared a boron-depleted medium in which borate concentration was below a detection limit (0.2 µM), as determined by the spectrophotometric quantitation with H-resorcinol. Using this boron-depleted medium, A. platensis NIES-39 was analyzed for changes in growth, dry biomass weight and the protein, chlorophyll a and C-phycocyanin contents. Experimental results showed that removal of boron from the growth medium had no detectable effect on them. A control experiment with a heterocystous cyanobacterium Anabaena sp. UTEX 2576 showed that the growth of this cyanobacterium was suppressed in a boron-depleted medium. These experiments demonstrated that boron was not required for the growth of A. platensis. Our results indicate that boron supply is not necessary for the propagation of A. platensis even in the regions where boron deficiency in the soil deteriorates the growth of common crops. Use of boron-free media would also be helpful to improve the reproducibility of sensitive physiological experiments such as metabolome analysis, because precipitation of the insoluble salt manganese borate, which may reduce the concentration of Mn$^{2+}$ in the medium, does not occur in boron-free media.

Keywords: Cyanobacteria, Spirulina, Arthrospira platensis, Boron, H-resorcinol

1. INTRODUCTION

Arthrospira platensis is an edible alkalophilic cyanobacterium that has been consumed worldwide as a nutrient source and food additives [1][2]. Phycobiliproteins from this cyanobacterium are also widely used as natural colorants for foods and cosmetics [2]. Products of A. platensis and a closely related species A. maxima are usually marketed under the name spirulina, because they had formerly been classified in the genus Spirulina.

In the artificial propagation of A. platensis, boric acid is usually added to its growth medium [3], as it is well known that boron is required for the growth of many photosynthetic organisms. For example, higher plants require boron for the formation and maintenance of cell wall structures [4]. Therefore, deficiency of boron in the soil causes the development of many symptoms in higher plants [4][5]. Boron is also required for the maintenance of the integrity of heterocyst cells that perform N₂ fixation in heterocystous filamentous cyanobacteria [6][7]. Boron is involved in stabilizing the heterocyst envelope in these cyanobacteria [8]. However, in contrast to higher plants and heterocystous cyanobacteria, many non-heterocystous cyanobacteria are tolerant to boron deficiency [7][9].

Since A. platensis is also non-heterocystous, it is possible that boron is not necessary for the growth of this cyanobacterium. However, boron requirement by A. platensis has not yet been carefully examined. Knowledge about the boron requirement would be helpful for the agriculture of A. platensis, especially in the region where boron deficiency in the soil deteriorates healthy growth of many common crops [5].

Knowledge on the boron requirement by A. platensis is also helpful for basic studies of this cyanobacterium. In laboratory-scale experiments, inclusion of boric acid in the growth medium results in the gradual precipitation of the insoluble salt manganese borate [10], possibly causing the change in the Mn$^{2+}$ concentration and gradual depletion of Mn$^{2+}$ in the growth medium. This may reduce the reproducibility of sensitive physiological experiments, e.g., metabolome analysis, because manganese is an essential component of the oxygen-evolving complex in photosystem II [11], as well as many cellular enzymes (e.g., xylose isomerase, glutamine synthetase and phosphoglycerate mutase [12]), and therefore alterations in the manganese concentration may affect cellular physiology. If boron is determined to be dispensable for the growth of A. platensis, boric acid can be omitted.
from the growth medium to improve the reproducibility of sensitive physiological experiments.

In this study, we prepared a boron-depleted medium, and effects of boron on the growth and some biochemical properties of A. platensis were examined to determine whether boron depletion had any effect on this cyanobacterium.

2. MATERIAlS AND METHODS

2.1 Reagents

H-resorcinol, or 1-(2,4-Dihydroxy-1-phenylazo)-8-hydroxynaphthalene-3,6-disulphonic acid disodium salt, was purchased from Tokyo Chemical Industry Co. (Tokyo). Other chemicals were purchased from Nakalai Tesque (Kyoto) and Wako Pure Chemical Industries (Osaka). All chemicals were reagent grade or better. Water was purified with the Milli-Q Advantage A10 Ultrapure Water Purification System (Merck Millipore, Darmstadt) before use. Polypropylene plasticware was used to prepare reagent solutions, to avoid boron contamination from glassware [13]

2.2 Cyanobacterial strains

A. platensis NIES-39 was obtained from the MicrObial Culture Collection at the National Institute for Environmental Studies, Tsukuba (MCC-NIES). Anabaena sp. UTEX 2576 was obtained from the Culture Collection of Algae at the University of Texas at Austin (UTEX).

2.3 Growth media and growth conditions

SOT medium and boron-depleted SOT medium for A. platensis were prepared as described [14][15], except that the macromolecule solution used to prepare the latter medium did not contain boric acid. Anabaena sp. UTEX 2576 was cultured either in BG110 medium [16] or in the boron-depleted BG110 medium that contained no added boric acid. Cyanobacterial cells were cultured in 250-mL polycarbonate Erlenmeyer flasks (Thermo Scientific Nalgene, Waltham) containing 200 mL each of growth medium. Conditions for light and temperature were as described [15][17]. A. platensis NIES-39 was pre-cultured in the boron-containing medium, harvested by filtration on nylon mesh as described [17], and washed on it with boron-depleted medium before inoculation into each growth medium. Anabaena sp. UTEX 2576 was cultured in the same way except that pre-cultured cells were collected and washed by centrifugation rather than by filtration.

2.4 Quantitation of boron in the medium

To draw standard curves, 900 μL of 0.11 mM H-resorcinol in 0.65 M ammonium acetate-acetic acid buffer (pH 5.5) was mixed with 100 μL of SOT medium containing various concentrations of boric acid. The mixtures were incubated at 25°C with constant shaking at 140 rpm. After 60 h, optical density at the wavelength of 510 nm (OD510) was determined with a spectrophotometer (Novaspec II, Pharmacia-LKB Biotechnology, Uppsala). Samples for quantitation were reacted with H-resorcinol in the same way, and OD510 was determined. Means and the standard errors of means were determined from 4 samples.

2.5 Determination of growth curves

Cyanobacterial cells were cultured in four polycarbonate flasks for each set of culture conditions. The means and the standard deviations of the OD730 values and the trichome concentrations were determined over time. The numbers of trichomes in cultures were determined as described [18].

2.6 Determination of the amounts of biomass, protein, chlorophyll a, and C-phycocyanin

Samples were taken from cultures during the late logarithmic phase when the OD730 values of the cultures were approximately 1.0–1.2. Data were obtained from four independent cultures for each set of culture conditions, and the means and the standard deviations were determined.

To determine the amount of biomass, 10 mL of cultures were centrifuged at 4°C for 20 min at 3,000 g, and the collected biomass was washed with 1 mL each of distilled water for 5 times. The washed biomass was dried at 85°C for 72 h, cooled down, and weighed.

To determine the amount of proteins, cells in 1 mL of samples were collected by centrifugation as above and washed five times with 1 mL each of 25 mM Tris-HCl (pH 7.4), 138 mM NaCl, 2.68 mM KCl (Tris-buffered saline). Then, they were disrupted by the Mini-Beadbeater-1 (Biospec Products, Bartlesville) using the 0.1 mm diameter glass beads. In the disruption, shaking the samples on the equipment for 30 sec and cooling them on ice for 1 min were repeated 7 times. Protein concentrations in these samples were determined by Bradford's method [19] using Bio-Rad Protein Assay kit (Bio-Rad Laboratories, Hercules). As a standard for protein determination, bovine γ-globulin (Bio-Rad Laboratories) was used.

Concentrations of chlorophyll a and C-phycocyanin were determined from the OD620 and OD678 values of the cultures as described [20].
3. RESULTS

3.1 Quantitation of boron concentration in the growth medium

In the experiments to follow, *A. platensis* was propagated in the medium with no added boric acid. However, it is known that considerable amount of boron is released from borosilicate glass into water when solutions are stored in glassware [13]. Therefore, the medium and all solutions were prepared in plasticware to avoid boron contamination from glassware. Even with this care, it was still possible that reagents used to prepare the medium were contaminated with boron. Therefore, boron concentration in the prepared growth medium was examined before performing the main experiments. To determine boron concentration, a spectrophotometric quantitation method with H-resorcinol was employed. This reagent forms a 1:1 complex with boron under weakly acidic conditions with an optimum at pH 5.5, and the complex can be determined spectrophotometrically at 510 nm [21]–[23].

Results of the boron quantitation in the boron-depleted medium and in the usual medium (SOT medium) are shown in Fig. 1. As shown in the upper left panel, experiments to draw a calibration curve showed that the standard solutions containing as low as 0.2 µM boric acid (12.4 ng mL⁻¹) exhibited significant OD₅₁₀ values, indicating that detection limit for boric acid with this method was lower than 0.2 µM. In contrast, samples prepared with the boron-depleted medium exhibited hardly detectable absorption at 510 nm (Fig. 1, upper right panel). Therefore it was clear that boric acid concentration in this medium was far lower than 0.2 µM. In this respect, it has been reported that, when water was stored in glass bottles, concentration of boron released from glass into water reached 5.2 µM [13]. Therefore, the boron level in the boron-depleted medium (<0.2 µM) was far lower than the residual level of boron in water stored in glass bottles. Concentration of boric acid in the SOT medium used in this study was also examined and determined to be approximately 45 µM (Fig. 1, lower panels).

3.2 Effect of boron depletion on the growth of *A. platensis* NIES-39 and *Anabaena* sp. UTEX 2576

To examine the effect of boron on the growth of *A. platensis*, *A. platensis* NIES-39 was cultured in the usual SOT medium and in the boron-depleted medium prepared as above. Trichome concentrations and the OD₇₃₀ values were determined over time, and growth curves were drawn. As shown in Fig. 2, there were no significant differences between the growth curves...
Fig. 3 Growth of Anabaena sp. in relation to boron
determined in the presence and absence of boron, indicating that boron depletion had no detectable
effect on the growth of A. platensis NIES-39.

As a control experiment, a heterocystous cyanobacterium Anabaena sp. UTEX 2576 was
cultured in the boron-containing medium (BG110 medium) and in the boron-depleted BG110 medium.
As shown in Fig. 3, growth of this cyanobacterium was suppressed in the boron-depleted medium.
Statistical analysis by the Student's t-test indicated significant differences ($P<0.05$) between the
cultures in the BG110 medium and in the boron-depleted BG110 medium at and after 24 h. This
control experiment confirmed that boron had been
effectively depleted in the boron-depleted media
prepared in this study. It is worth noting that the
culture of Anabaena sp. UTEX 2576 grown in the
boron-depleted medium exhibited a yellowish color, similar to other heterocystous cyanobacteria
grown under boron-depleted conditions [6][7]. In
contrast, the culture of A. platensis NIES-39 had the usual blue-green color even when it was
propagated in the boron-depleted medium.

The experiments in Fig. 2 and Fig. 3 clearly indicated that boron depletion had no detectable
effect on the growth of A. platensis whereas it
deteriorated the growth of Anabaena sp. that
requires boron for the N2-fixation-dependent
growth.

3.3 Effect of boron depletion on the biomass and the protein, chlorophyll a, and C-
phytocyanin contents

A. platensis trichomes propagated in the boron-depleted medium were visually indistinguishable
from those propagated in the usual SOT medium, when their morphologies were observed under a
dissecting microscope. To examine whether there
were any differences in their cellular physiology, some biochemical properties were determined next.
possible that the boron released from the glass vessel into the alkaline-leached medium for A. platensis was sufficient to support the normal growth of A. platensis in that study. In contrast, our study was carefully performed using plasticware to avoid boron contamination. Our experimental results clearly demonstrated that even a residual amount of boron is not necessary for the growth of A. platensis (Fig. 2). In addition, there were no detectable differences in the biochemical properties of the cells grown in the presence and absence of boron (Fig. 4 and Fig. 5).

It has been reported that the C-phycocyanin content of many Arthrospira strains significantly increased when they were cultured in a medium that was not supplemented with microelements (Fe, B, Mn, Zn, Cu, Mo) [26]. This effect was most likely caused by the limitation of the element(s) other than boron, since our study demonstrated that boron depletion had no significant effect on the C-phycocyanin content.

A. platensis has been used for commercial propagation. In addition to commercial usage, it has also been used as a small-scale crop providing nutritional supplements for the communities where the staple diet is poor or inadequate [27][28]. The results of our study suggest that A. platensis can be an excellent crop that can be grown without boron supplementation even in the region where boron deficiency in the soil deteriorates the healthy growth of many common crops.

In the studies of Arthrospira, synthetic growth media used in biological experiments have been supplemented with boric acid [3][14]. However, boric acid gradually forms an insoluble salt manganese borate [10], since the growth media contain manganese ion. Formation of the precipitate of manganese borate may gradually deplete manganese ions in the media during prolonged storage. This may affect the results of sensitive physiological experiments, e.g., metabolome analysis, because manganese is an essential cofactor of many metabolic enzymes [11][12]. Since our study showed that boron is not necessary for the growth of A. platensis, the use of boron-free media is recommended when performing sensitive physiological experiments, to avoid the precipitation of manganese borate that may reduce effective concentration of manganese ions in the media.

6. ACKNOWLEDGEMENTS

This work was supported by the Grant-in-Aid for Challenging Exploratory Research from the Japan Society for the Promotion of Science [JSPS KAKENHI Grant Number 26660063] and the Management Expenses Grants for National University Corporations from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

7. REFERENCES

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.